Project Name: Biomass:	pyrolysis technology
-------------------------------	----------------------

Process Equipment (PFD #): R1

Section: Pyrolysis

	n Churche Descriptions Describes Courses						
Item	Study	Process	Deviations	Possible Causes	Possible Consequences	Action	Assigned
	Node	Parameters				Required	to:
1	Gas	Temperature	None	1. Chamber heat source not	*No heat for heat exchanger.	1. Check heat	Operator
	Outlet			working.		source	
			High	1. Heat source providing too	*Heat exchanger hot stream will be too hot,	1. Check heat	Engineer
				much heat. Exothermic reaction in chamber.	make CO ₂ inlet stream too hot.	source	
			Less	1. Heat source providing too little	*Heat exchanger hot stream will not be hot	1. Check heat	Engineer
				heat. Endothermic reaction in chamber.	enough to heat CO ₂ stream.	source	
		Pressure	High	1. CO₂ flow rate too high. Gas reaction runway. too much gas	*Different Syngas product ratios	1. Decrease CO ₂ flow rate.	Engineer
				production. Outlet blocked or hindered.			
		Flow	None	1. CO ₂ not flowing, outlet blocked.	*Chamber may rupture, no syngas production, no heat source for heat exchanger.	1. Check outlet and CO₂ flow rate	Engineer
			High	1. CO ₂ flow rate too high.	*Too much heat for heat exchanger. CO_2 inlet	1. Decrease CO ₂	Operator
			Low	1. Low CO ₂ flow rate.	*Not enough heat for heat exchanger. CO ₂ inlet	1. Increase CO ₂ flow	Operator
					not hot enough.	rate	operator
	Char Outlet	Temperature	None	1. No heat in chamber.	*No char for activated carbon	1. Check chamber	Operator
	Juliel		High	1.Chamber too hot	*Burnt char, affect quality of bio-oil	1. Check chamber	Operator
			Ŭ			heat source	
			Low	1. Chamber not hot enough	*Poor char quality for bio-oil	1. Check chamber	Operator
						heat source	

Project Name: Biomass: pyrolysis technology					Date: 31/7/15	Page : 2 of 3	
Proces	s Equipme	nt (PFD #): R1					
Section: Pyrolysis							
ltem	Study Node	Process Parameters	Deviations	Possible Causes	Possible Consequences	Action Required	Assigned to
2	Feed Stream (inlet)	Flow of N_2	No	 Closed outlet valve on FBR No reaction/material in FBR Vapor steam condensing in previous heat exchanger. 	 * No water condensed or recycled, steam shortage in subsequent reactions. * Excess heat retained in, equipment damage. 	 Consider a valve that fails open Install alarm/sensor 	Engineer Engineer
			Less	 Valve on FBR partly closed Some vapor condensing in previous heat exchanger. 	 * Not enough water recycled; steam shortage. * Previous HX damaged by condensation. 	 Consider a valve that fails open. Install a flow meter 	Engineer Engineer
			More	 More raw material in FBR than expected; more gases evolved as byproducts. Higher temperatures lead to volume expansion of gases. 	 * More water condensed and recycled than needed; extra energy must be supplied. * Condenser experiences a higher pressure. 	 Install a flow regulator and flow splitter. Design condenser using stronger materials. 	Engineer Engineer
		Temperature	High	 Not enough cooling water for previous heat exchanger. Gas products leaving FBR hotter than expected. 	 * Less water will be condensed, causing a steam shortage. * More water vapor entrained in CO2 stream leaving condenser, which can affect the yield of the pyrolyzer. 	 Consider valves that fail open and more powerful pumps. Install flow meter. Install O₂ flowmeter and regulate T, P. 	Engineer Engineer Engineer
			Low	 Too much cooling water in previous heat exchanger. High heat loss rates in piping between HX and condenser. 	 * More water condensed and recycled than needed; extra steam results in higher pressures in pipes. * Condensed water leaves condenser at lower temperatures than expected; need more energy to revaporize water to form steam. 	 Insulate pipe between previous heat exchanger and condenser. Install flow regulator. Design larger steam pipes 	Engineer Engineer Engineer

Project Name: Biomass: pyrolysis technology					Date: 31/7/15	Page: 3 of 3		
Proces	Process Equipment (PFD #): R1							
Section: Pyrolysis								
Item	Study Node	Process Parameters	Deviation	Possible Causes	Possible Consequences	Action Required	Assigned to	
3	Reactor Vessel	Flow of effluent and fluidizing medium	None	 Valve on FBR inlet closed. Tripped circuit breaker. 	 * Loss of function for most major equipment. *Loss of control and automation 	 Install GFCI outlets Install automated valve for vessel 	Electrician Engineer	
			Low	 Valve on FBR partly closed. Clog in reactor valve from activated carbon pieces. 	* Unsuccessful batch run, needs to be restarted	1. Install mesh screens to cover vessel inlet and outlet	Contractor	
			High	1. Surge of Steam	* Explosion	 Outfit reactor vessel to withstand high pressures and install emergency relief valve. 	Contractor	
		Temperature Pressure	Low or High	1. The heater and pressure controller malfunctioned.	*Pressure and Temperature too high will cause explosion. *Temperature and Pressure deviating from operational conditions results in different percentage of products obtained (Hence it will affect the amount of Bio-Oil obtained in our case).	1.Check the pressure and temperature regularly.	Engineer	

References

Hung, J. J. (2012, May). *The Production of Activated Carbon from Coconut Shells Using Pyrolysis and Fluidized Bed Reactors*. Retrieved August 1, 2015, from http://arizona.openrepository.com/arizona/bitstream/10150/243968/1/azu_etd_mr_2012_0079_sip1_m.pdf